1,425 research outputs found

    A Rapid Gamma-Ray Glow Flux Reduction Observed From 20 km Altitude

    Get PDF
    Two gamma-ray glows were observed by a high-altitude NASA ER-2 aircraft flying at 20 km altitude over a thunderstorm in Colorado, USA. The flux of the first glow rapidly intensified and then abruptly decreased within a few tens of milliseconds. On a timescale of seconds, the flux decrease occurred simultaneously with a hybrid intra-cloud/cloud-to-ground lightning discharge beneath the aircraft. However, a more detailed analysis of the discharge dynamics indicated that the discharge activity was unusually calm during the actual period of the flux decrease. The lightning was observed with on-board antennas, optical sensor, and ground-based lightning mapping and location networks. Its closest activity was 12 km away from the aircraft, below and slightly ahead the course. The gamma-ray flux reduction happened roughly in the middle of the lightning development process. The glow spectral analysis for the periods of a weak and strong flux enhancement has been done. The spectra were found to be background-like and similar to each other.publishedVersio

    Gamma Ray Glow Observations at 20-km Altitude

    Get PDF
    In the spring of 2017 an ER‐2 aircraft campaign was undertaken over continental United States to observe energetic radiation from thunderstorms and lightning. The payload consisted of a suite of instruments designed to detect optical signals, electric fields, and gamma rays from lightning. Starting from Georgia, USA, 16 flights were performed, for a total of about 70 flight hours at a cruise altitude of 20 km. Of these, 45 flight hours were over thunderstorm regions. An analysis of two gamma ray glow events that were observed over Colorado at 21:47 UT on 8 May 2017 is presented. We explore the charge structure of the cloud system, as well as possible mechanisms that can produce the gamma ray glows. The thundercloud system we passed during the gamma ray glow observation had strong convection in the core of the cloud system. Electric field measurements combined with radar and radio measurements suggest an inverted charge structure, with an upper negative charge layer and a lower positive charge layer. Based on modeling results, we were not able to unambiguously determine the production mechanism. Possible mechanisms are either an enhancement of cosmic background locally (above or below 20 km) by an electric field below the local threshold or an enhancement of the cosmic background inside the cloud but then with normal polarity and an electric field well above the Relativistic Runaway Electron Avalanche threshold.publishedVersio

    First 10 Months of TGF Observations by ASIM

    Get PDF
    The Atmosphere‐Space Interactions Monitor (ASIM) was launched to the International Space Station on 2 April 2018. The ASIM payload consists of two main instruments, the Modular X‐ray and Gamma‐ray Sensor (MXGS) for imaging and spectral analysis of Terrestrial Gamma‐ray Flashes (TGFs) and the Modular Multi‐spectral Imaging Array for detection, imaging, and spectral analysis of Transient Luminous Events and lightning. ASIM is the first space mission designed for simultaneous observations of Transient Luminous Events, TGFs, and optical lightning. During the first 10 months of operation (2 June 2018 to 1 April 2019) the MXGS has observed 217 TGFs. In this paper we report several unprecedented measurements and new scientific results obtained by ASIM during this period: (1) simultaneous TGF observations by Fermi Gamma‐ray Burst Monitor and ASIM MXGS revealing the very good detection capability of ASIM MXGS and showing substructures in the TGF, (2) TGFs and Elves produced during the same lightning flash and even simultaneously have been observed, (3) first imaging of TGFs giving a unique source location, (4) strong statistical support for TGFs being produced during the upward propagation of a leader just before a large current pulse heats up the channel and emits a strong optical pulse, and (5) the t 50 duration of TGFs observed from space is shorter than previously reported.publishedVersio

    Terrestrial Gamma-Ray Flashes With Accompanying Elves Detected by ASIM

    Get PDF
    The Atmosphere-Space Interactions Monitor was designed to monitor Terrestrial Gamma-ray Flashes (TGFs) and Transient Luminous Events (TLEs) from space, enabling the study of how these phenomena are related. In this paper, we present observations of 17 TGFs with accompanying Elves. TGFs are short and highly energetic bursts of gamma photons associated with lightning discharges, whereas Elves are TLEs that are observed as concentric rings of ultraviolet (UV) and visible light at ionospheric altitudes, produced by the excitation of N2 molecules when an electromagnetic pulse hits the base of the ionosphere. Elves were identified when optical detections in the UV band could be clearly distinguished from other optical signals from lightning strokes. The TGFs they accompanied had short durations and were associated with particularly high peak current lightning. Lightning sferics associated with these events were detected by the global lightning network GLD360 and the World Wide Lightning Location Network, and they were, with the exception of one event, observed over ocean or coastal regions. It is likely that these events were associated with Energetic In-cloud Pulses. We show that short duration TGFs tend to be associated with higher peak currents than long duration TGFs.publishedVersio

    Spectral Analysis of Individual Terrestrial Gamma-ray Flashes Detected by ASIM

    Get PDF
    The Atmosphere-Space Interactions Monitor (ASIM) is the first instrument in space specifically designed to observe terrestrial gamma-ray flashes (TGFs). TGFs are high energy photons associated with lightning flashes and we perform the spectral analysis of 17 TGFs detected by ASIM. The TGF sample is carefully selected by rigorous selection criteria to keep a clean sample suitable for spectral analysis, that is, suitable count statistics, low instrumental effects, and reliable source location. Monte Carlo modeling of individual TGFs has been compared to the observed energy spectra to study the possible source altitudes and beaming geometries. A careful model of the instrumental effects has been developed and validated. Several combinations of source altitudes and beaming geometries are accepted by the statistical tests for all the TGFs in the sample resulting in a large uncertainty in the estimate of the intrinsic source luminosity. The analyzed TGFs show significant variations in observed fluence independent of the distance between source and ASIM. A lower limit on the maximum photon energy produced by TGFs is estimated to be 24 MeV for the analyzed TGFs. The intrinsic limitations of TGF spectral analysis from space are also investigated and it is found that the ability to constrain the source altitude and beaming geometries of TGFs strongly depends on the distance between source and satellite. With the current generation of instruments with effective areas in the range of few hundreds cm2, it is very difficult to constrain reliably the source properties without the help of simultaneous measurements in the radio band.publishedVersio

    Image quality of list-mode proton imaging without front trackers

    Get PDF
    List mode proton imaging relies on accurate reconstruction of the proton most likely path (MLP) through the patient. This typically requires two sets of position sensitive detector systems, one upstream (front) and one downstream (rear) of the patient. However, for a clinical implementation it can be preferable to omit the front trackers (single-sided proton imaging). For such a system, the MLP can be computed from information available through the beam delivery system and the remaining rear tracker set. In this work, we use Monte Carlo simulations to compare a conventional double-sided (using both front and rear detector systems) with a single-sided system (only rear detector system) by evaluating the spatial resolution of proton radiographs (pRad) and proton CT images (pCT) acquired with these set-ups. Both the pencil beam spot size, as well as the spacing between spots was also adjusted to identify the impact of these beam parameters on the image quality. Relying only on the pencil beam central position for computing the MLP resulted in severe image artifacts both in pRad and pCT. Using the recently extended-MLP formalism that incorporate pencil beam uncertainty removed these image artifacts. However, using a more focused pencil beam with this algorithm induced image artifacts when the spot spacing was the same as the beam spot size. The spatial resolution tested with a sharp edge gradient technique was reduced by 40% for single-sided (MTF10% = 3.0 lp/cm) compared to double-sided (MTF10% = 4.9 lp/cm) pRad with ideal tracking detectors. Using realistic trackers the difference decreased to 30%, with MTF10% of 4.0 lp/cm for the realistic double-sided and 2.7 lp/cm for the realistic single-sided setup. When studying an anthropomorphic paediatric head phantom both single- and double-sided set-ups performed similarly where the difference in water equivalent thickness (WET) between the two set-ups were less than 0.01 mm in homogeneous areas of the head. Larger discrepancies between the two set-ups were visible in high density gradients like the facial structures. A complete CT reconstruction of a Catphan®^{\circledR} module was performed. Assuming ideal detectors, the obtained spatial resolution was 5.1 lp/cm for double-sided and 3.8 lp/cm for the single-sided setup. Double- and single-sided pRad with realistic tracker properties returned a spatial resolution of 3.8 lp/cm and 3.2 lp/cm, respectively. Future studies should investigate the development of dedicated reconstruction algorithms targeted for single-sided particle imaging.publishedVersio

    Constraining Spectral Models of a Terrestrial GammaRay Flash From a Terrestrial Electron Beam Observation by the Atmosphere-Space Interactions Monitor

    Get PDF
    Terrestrial Gamma ray Flashes (TGFs) are short flashes of high energy photons, produced by thunderstorms. When interacting with the atmosphere, they produce relativistic electrons and positrons, and a part gets bounded to geomagnetic field lines and travels large distances in space. This phenomenon is called a Terrestrial Electron Beam (TEB). The Atmosphere-Space Interactions Monitor (ASIM) mounted on-board the International Space Station detected a new TEB event on March 24, 2019, originating from the tropical cyclone Johanina. Using ASIM's low energy detector, the TEB energy spectrum is resolved down to 50 keV. We provide a method to constrain the TGF source spectrum based on the detected TEB spectrum. Applied to this event, it shows that only fully developed Relativistic Runaway Electron Avalanche spectra are compatible with the observation. More specifically, assuming a TGF spectrum urn:x-wiley:00948276:media:grl62333:grl62333-math-0001, the compatible models have ϵ ≥ 6.5 MeV (E is the photon energy and ϵ is the cut-off energy). We could not exclude models with ϵ of 8 and 10 MeV.publishedVersio
    corecore